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This report deseribes rescarch about flow graphs = labeled. directed, acyclic
graphs which abstract representations used in a variety of Artificial Intelli-
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gence applications. Flow graphs may be derived from flow grammars much X,
as strings may be derived from string grammars; this derivation process :h?.
forms a uscful model for the stepwise refinement processes used in program- L
ming and other engineering domains. 1

The central result of this report is a parsing algorithm for flow graphs.
Given a flow grammar and a flow graph, the algorithm determines whether
the grammar generates the graph and, if so. finds all possible derivations for
it. The author has implemented the algorithm in LISP.
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The intent of this report is to make flow-graph parsing available as an
analytic tool for rescarchers in Artificial Intelligence. The report explores
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the intuitions behind the parsing algorithin, contains numerous, extensive e
examples of its behavior. and provides some guidance for those who wish to C;{-
customize the algorithm to their own uses. 0t
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Chapter 1. -8

Introduction

ol
o

I\‘ - )
!“'l -
~ X
" This report smmmarizes research about flow graphs. a graph-based repre- o
L2 - . . cgs . PR
N scntation abstracted from those used in a variety of Artificial Intelligence Sk
appiications. A flow graph is a labeled. directed. acyclic graph whose nodes lr.O}
o arc annotated with ports—positions at which edges enter or leave the node. ERE
e Here is an cxample of a flow graph: e
S )
o e,
.' L@
:\-": _."
<o ~
.‘I" .. "-
o 0
o ey .
>
1] o' :
)
“
."_: .
L

f~j.\‘ We can generate complex flow graphs {romn simple ones by replacing single
EN nodes with multi-node subgraphs. The obvious analogy between this process
e and that of string derivation from a context-free grammar gives rise to the
o notion of a flow grammar: a sct of rewriting rules which specify how to
-~ replace given nodes with p:c-specified subgraphs. Here is an example of a

rale from a Qow grammar:
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1 Iutroduction

The central result of this report is a parsing aleorithm for flow graphs.
Given a Bow grammar and a Bow graph. the algoritlim deternmines whether
the grammar generates the geaph and. if so. finds all possible derivations for
it. The algorithm muns in time polynomial w the number of nodes in the
input graph. with an exponent and constan' of proportionahity determined
by theinput grammar. The anthior has implemented the algoritlun in LISP.

1.1. Motivation

The work described here grew out of the author's research into automated
program analysis [Brotsky 1981). done as part of the Programmer’s Appren-
tice project at the Artificial Intelligence Laboratory of the Massachusetts
Insuture of Technology {Rich and Watcrs 1081]. In the work of that group,
programs are represented as annotated graphs. called plans. whose nodes
stand for operations and whose arcs indicate control and data Aow between
the nodes. (Plans are additionally annotated with a great deal of other
information about the program thcy -epresent. but the details of these an-
notations do not concern us here. Interested readers should consult [Rich
1080}

The author’s idea was that the stepwise-refinement process. wherein high-
level program operations are implemented as groups of lower-level opera-
tions. could naturally be modeled as a plan-rewriting process. Thus, flow
graphs were developed as abstractions of plan structure. How graminars were
developed to encode allowable derivation steps. flow-graph derivations were
developed as models of plan derivations. and structural program analysis
could bie effected through parsing.

This program-analysix work is continning. but doces not concern us here.
Flow graphs. while developed as ad hoe abstractions of plans. are general
enough to =erve as abstractions of the graphical representations of other
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1.2 Backgronnd 3

domains. The intent of this report s to nake How graph parsing avaalable
as an analytic tool for AT rescarchers i these other domains.

1.2. Background

The structure of fow graphs and flow grammars has been influenced by early
work on weh gramemars [Plaltz and Rosenfeld 1969, Montanar: 1970: Pavlidis
1972, bur none of this work was concerned with parsing. The structure of
our parsing algorithu arose from careful study of Earley’s algorithm [Earley
1969! and Donald E. Kuuth's seruinal work on LR (k) string grammars 11965,

1.3. Structure of this Report

Chapter 1 of this report is tlis introduction. Chapter 2 describes flow
graphs. flow grammar:. and How-graph derivations 1 detanl. Chapter 3
presents a derivation of Earley's algorithm which differs considerably from
those found in standard sources. Tlhis derivations is given as background
for the very similar derivation of the graphs parsiug algorithin presented
in chapter 4. Fiually. chapter 5 discusses How graphs. grammars, and the
parsing algoritlun. This discussion includes a brief complexity analysis of
the algorithm. and suggestions for rclated research.
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Definitions
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LYY

In this chapter we dcfine flow graphs and flow granimars, and give the
mechanism by which a grammar derives a graph.

.

- 2.1. Flow Graphs -
- -
A flow graph is a labeled, acyclic, directed graph whose nodes and edges are ?ji"
restricted in a variety of ways: . -

Lot TS

e The label of cach node is called its type.

5 ..
¢ Each node has a set of tnput ports and a sct of output ports. These two ""!
x sets are disjoint. All nodes with the same type have the same input and
)
4

output port sets.

e The inpnt and output port sets of low graph nodes are never empty. el
That is, all nodes have at least one input and one output port. t 8

o ILdges in flow graphs do not mu merely from one node to another, but
from a particular output po. one node to a particular input port of
another. No two cdges may enter or exit from the same port, so a node
can be adjoined by only as many cdges as it has ports.

L ll-i‘l’_.f_‘f‘r_.w‘-‘mil{‘."._"v"f

Intuitively, a flow graph looks like this:

- b .
q @
- o
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6 2 Dehinitions

Notice that ports (which are identified by numeric annotations on the nodes)
need not have edges adjoining them. Any input (or output) port in a flow
graph that does not have an edge running into (or out of) it is called an
input (or output) of that graph.

Notation

We will always direct our flow-graph diagrams from left to right. We will
often subscript node types so as to make them into uniquc labels. (This
avoids awkward constructions xuch as “the third a from the bottom-left.”)
When we do not care which por an edge adjoins. or if this is mad. clear
froin context. we will omit port .nnotations. If we omit all the ports an-
notations on a node. we will often omit the cirele drawn around the node’s
label. Tinally, we will always emphasize the inputs and outputs of graphs
by adjoining them with edge stubs, called the leading and (rasling edges of
the graph.

Here is the graph we saw above written using the conventions just de-
scribed:

R S -
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2.2 Flow Graamars 7

— x
T
~N—

We will use this forru whenever possible.

Terminology

The linkage information for a node in a graph is a set of (port, edge) pairs
detailing which edge adjoins each port on that node. For example, figure 2.1
shows a graph whose edges liave been labeled for easy reference. The linkage
information for nodes a; and 2z in this graph is:

ay $ 4]
(1,€1) (1,30)
(2133) (2! 81)
(3.¢€4) (3, ¢s)

In kecping with our left-to-right conventions, that portion of a node's linkage
information which involves only input {regp. output) edges is called its left-
linkage (resp. right-linkage) information.

2.2. Flow Grgmmars

Flow grammars are a generalization of context-frec string gramiuars. Essen-
tially. a flow gramnmar is a sct of rewriting rules. where each rule explains
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K B

A

- w1
- .9

N -3
32 g
- ~:: Figure 2.1. A flow graph. The edges of this graph have becn labeled for ecasy :_-_“1
e reference. =
L -3
-~ -

h &
-

how to replare a node in a graph with a particular sub-graphi. Just as a

R .
-::;: string gramn.ar gradually rewrites a single-element string as a longer and (}j
s longer string. a flow grammar gradually rewrites a single-node graph as a ::"-:1
Ny larger and larger graph. jffJ'
More precisely. a flow grammar G consists of 4 parts: a set P of produc- .j
tions, two disjoint sets of types N—the non-terminals—and T—the termi- !1!1
nals, and a distinguished non-terminal type S —the start type of G. Each ~f._’t‘
production in P consists of three parts: two flow graphs and a list of port x‘jl
corrcspondences. The first of the two flow graphs—the production’s left- :,‘_-1
hand side—consists of a single node whose type must be from N. The -
! second of the flow graphs—thie right-hand side—ccensists of nodes whose »
'.:',-:: types are from N UT. The left and right-hand sides must have the same ‘.‘_::
:-'_::- number of inputs aud outputs. and the list of port correspondences is a 1-1 ‘:_
;}J correspondence between inputs and outputs of the two sides. -_:j:
';:’;'; A flow grammar is shown in figure 2.2 Each rule maps a single node to .‘-.’j
3 a graph. The left-hand side node of cach rule must be a non-terniinal, that _.
I:::fj. is, of a non-terminal type, while the right-hand side graph can niix types at :-::3
::::f: will. (We will indicate non-terminal types with capital letters. and terminal ::j'
e types with lower case letters.) :';;3
R The inputs of the left-hand side of a rule correspond one-to-one with the o
E inputs of the right-hand side. as do the outputs. Where clarity is needed, ~1’
:::'__‘: we will indicated this relationship by drawing lines between the edge stubs \:1
-::7;: adjoining corresponding ports. as was done above. Where it's clear. however, .':]
-,\\“ :T;.;
i o
e
o -
o ]
'f-'p y :.1
e
(3% y
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t

.
St

i we will ndicate the correspondence simply by mirroring the aligunment of ]
-5 left-hand side edge stubs with those of the right-hand side. For example, s
N the second rie in the above graomar conld have been written az follows: :
| e
‘l:-’ ]
i /‘G 0y
. ® -
A :-)]
A o R
k! e 3
< o
ol
253
- PR
- B
e Notice that there is no flow-grammar equivalent of an “c-rule” in a string =
“a . . - .-
o grammar: that is. there are no flow gramimar rules whose rnight-hand sides -]
rd

arc empty. This is because it is meaningless to replace a node in a graph
with nothiing: the edges that were adjoined to that node must go somewhere

g |

NN A
y ".f' ,

AT }
> O S

R

2.3. Flow Grammar Derivations

.
(AR RN N A NS

E1T3
YT

* )
‘ ". . N ﬁ‘

Oy

Flow graphs are derived from flow grammars in the expected way. We
start with a graph consisting of a single £-node and then rewrite it with an
applicable rule from the grammar. This gives us a flow graph. If there are

~»

Ny no non-terminals in the derived graph. the derivation stops. Otherwise, we .
N pick a non-terminal and a rule that derives it, and replace the non-terminal {'.'_
by the right-hand side of the rule. This gives us another graph. and the @
whole process iterates. -
Of course, when we replace a non-terminal by a right-hand side that '3::
derives it. we have to do something with the edges that adjoinced that non- e
terminal. This is what the port correspondences in rules are for: if p was -
a port on the replaced non-terminal. then the edge that adjoined p (if any) ;,'
is made to adjoin p's corresponding port in the replaceinent graph, The ﬁ
restrictions on rule formation insure that there is never any question as to o
how a right-hand side should replace a left-hand side. For example, figure 2.3 L
shows the derivation of a graph from the grammar given in the last section. '
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Chapter 3.

Motivation for the Algorithm

Earley's algorithm is a well-known string parsing algorithm [Earley 1969,
It takes a string gramnar and a string as input. and determines all possible
derivations of that string fromn that grammar. The output of the algorithm
is a list of representations known as ttems: the acceptability and derivations
of the input string arc encoded in this list.

This section presents a derivation of Earley’s algorithm that differs sig-
nificantly from thosc found in stanaard sources. For a given input grammar
and string, we first construct a non-deterministic stack-based parser for the
grammar. We then deterministically simulate the behavior of that parser
when run on the input string: the representations of the parser’s config-
urations generated in this simulation will be homomorphic to the items
produced by Earley’s algorithm when run on the same input.

The derivation given here is presented as background for the very similar
derivation of our flow graph parsing algorithm given in the next chapter.
Much of the complexity inherent in both algorithms arises from optimiza-
tions that are employcd in the simulation process: since the intuitions under-
lying these optimizations are the same in both the string and graph cases,
we believe that presenting them in the relatively familiar context of string
parsing will make their use i graph parsing more comprehensible.

3.1. Non-Deterministic String Pars-

s

Given a context free grammar G with productions . .... P, and start

symbol S, the following construction yiclds a non-deterministic stack-based
parscr for G:
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14 3 Motivation for the Algorithing 01

< A
: 1. Construct a stateamachine recognizer for the richt-hand side of cach P,. ‘;'.}':?:
- A state dn the recognizer Ry constrneted for mile By will consist of a copy S
of Ps right-hand side with a dot placed just to the left or neht of one of -

its symbols: the state set of R, will cousist of all the states formed in this 2rY

way. The state transition function of R, will map {state. symbol) pairs 'l'}:'_j:
:-'.: to states: cach state with a dot to the left of soine symbol s will have a B _;;j
& transition on s to the state whose dot is just to the right of . The initial el
:'_t state of R, will be the state with a dot to the left of the leftinost symbol e
. in P,’s right-hand side: its final (accepting) state will be the state whose :6:
dot is to the right of the rightmost symbol in P;’s right-hand side. R %
_':: For example. if P, is the production A — zBAy. then the recognizer for - ::j
: P, will have the following five states: ;
-~ .

[A = -zBAyj
(A — z- BAy|
(4 — zB- Ay|
[A = zBA -y .
[A = zBAy e

and the transition diagram for P,’s recognizer would look as follows:
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2. Create a state-based machine P whose state space and transition function
is the union of all those of the recognizers for the P,. Thic initial and final
states of P are the iritial and final states of the recognizer for §.

b P
P AR
'.l'l'-'-‘_'-.
riv AR

¥ - 4

o -
- 3. Convert P to a non-deterministic stack machine by adding a stack and
:’::j instructions as follows: For each state s which has a transition on a non- =

terminal input. associated instructions to that state which (i) push the =
state onto the stack and (i) put P inro the start state of the recognizer for
sonie production which derives that non-terminal. (If the non-terminal
on which a state has a transition has n possible derivation:. then this
step will associate n instructions with that state.)

Cowplete P by adding instructions as follows: To each accepting state of e
a recognizer for a Py, add an instruction which (i) pops a state off the top
of the stack and (ii) put P into the state which is led to by the popped
state’s transition on the non-terminal derived by P
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.- . .

t.‘ The wachine P built dn this way ix o top-down nou-deternninistic parser
(S for sentences derived from 6.2 Tt operates by reading symbols one at a T
'Q? tiie from the input and wmaking appropriate =talce trausitions as it does so. Sl
X Whenever it enters a state which his associated stack mstenetions. it chooses o
! onc of those mstructions and exccutes it. (The choice involved bere is what -
A . . . .
N makes the parser nou-deterministic.) We first consider an example of such N
E—i *a parser. and then discuss some implications of the construction technique.

! 3.1.1. An Example

..

" Consider the following grammar G:

~

’\'.

.

y

l.“-

! S —Aa

KN A—c

L A—cA

IR ™ |

.,
Ry

G derives all strings consisting of one or more ¢'s followed by an a. We will g
carry out the construction described above so as to producc a parser for G,
and then run this parser on the input cca.

S~

’l
<. :

-, o
:- First, we construct state machines which recognize each of the produc- ’ ‘
A e
E tions in G. Thesc are as follows: £~
o ".
"‘ 'Actually. this machine. is mercly an acceptor for such sentcuces. Howcver. if we have
— each push instenction in 2 output the non-teninal which gave rise to the push. and we
‘e output ench iuput symbol as it is read. then each accepting path through P will output

A

s Jeftmost derivation for the sentence accepted. Thus, we view P as a parscr.
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16 J Motivation for the Alrorithin

Now we create the union machine and replace non-terminal transitions with
pushes:
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Finally. we complete the construction by adding stack pops on reductions:
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18 J Mativation for the Algorithm

This completes our parser. We will represent a given configuration of the
" parser as '

{iuput position}  Hstare): ((stack top)i. .. (stack hottom))]

where the states are represented using the dot representation shown above.
(Recall that stack entries are just states.) For example. when running this
parser on the string cea. it starts in the following configuration:

0 (S = - Aa. ()] »:

The state [S — - Aal has two transitions on push instructions. The parser S
must choose one of the 1w, leading it into one of these two configurations:

0{¢) [A — -c.(§ — - Aa)] .
[A — -cA, (8§ — - Aa)] '®

At this point. no more state transitions are possibie without reading an :-i:.}
input symbol. Thus. the parser will read the first ¢, leading it into one of R

. these configurations: -'.j-:}
1(c) |A-—c- (S —-Aa) .

[A = ¢ A (S — - Ada) ‘-

The first of these two confizurations is ar. accepting state for the rule A — ¢, 1

and allows a pop into the following configuration:

.,

|‘-'.

I{e) [§—A-q,()]

. v,
while the second configuration is in a state containing push transitions to
the these configurations: g

He) [A—=-c,(A—>c-A;S — - Aa) :'_:j
[A—-c4,(A—c-A:S — : Aa)] <y

. .. . . , 1

Once again. no more state transitions are possible without reading another S,

input symbol.

We can summarize all the possible computations so far in the following
tabular fashion:

. 4'..‘ -’“"‘f
: ;g .

0(c) [S — A-a.()]
(A~ -c.(§— - Aa)]
[A -~ -cA.(S— -Ac)!
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1{e) [A = e (8 — - Aa)
|5 = A-a.()
[A = c-A.(S - - Aa)]
[A = -c.(A—c-A:S — - Aa)]
(A= cA (A—=c A5 — - Aa)]

We will use thiz formn extensively to suminarize actions of these parsers; for

example. the remainder of the run of this parser on the string cca goes as
follows:

2(cc) [A-+e(A—=c-AS—-Ad)
[A—cA (S — - Aa)]
[§ — 4-a,()]
[A—=c-A (A—=c-AS — - Ad)
[A—=-c,(A—=c AjA—~c AS — - Aad)]
[A— cA(A—c- A A—c A S~ - Aa)

3(cca) [S — Aa-, ()]

3.1.2. Discussion

From one point of view, this construction technique produces classic recursive-
descent parsers, such as those presented in undergraduate compiloi‘ classes.
Where a recursive-descent parser would have a subroutine dedicated to the
recognition of each rule's right-hand side. thege parscrs have state-machine
recognizers, and these recognizers arc linked together via a “subroutine-
call” mechanism based on a stack. In what follows. we will often describe
the actions of these parsers using termninology suggested by this metaphor.

From another point of view, this construction technique produces clas-
sic push-down automatata. “The state-based machines constructed for each
grammar rule are finite-state recognizers for the right-hand sides of those
rules. and the dots in their states indicate the expected position of a read
head in the parser's input. In this context. the stack push and pop instruc-
tions act ag ¢-transitions between the various recoguizers. and the parser
appears as a non-deterministic pusi-down antomaton whose finite state con-
trol compares substrings of the input against the right-hand side of gram-
mar rules and whose stack monitors the center-emmbeddedness of the input
as a whole. In what follows, we will also use terminology suggested by this
metaphor.
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20 -3 Moativation for the Algorithm @
3.2. Simulating the State-based Parser o
In order to situndate a parser constencted as above., we must perform all ::f;j:_
the actions which follow from all possible non-deterministic choices. The o
recursive-deseent metaphor suggests that we do this with a sequential ap- @

proach that etiploys backtracking. while the antematon metaphor suggoests :
a parallel approach in which one simulator state represents a number of R

reachable parser states. We shall adopt this latter approach. and keep track j'-.'j‘::'
of all the (state. stack) pairs reachable by a parser at cach step of the in- _____
put. The result of the simulation will be a sequence of lists of reachable =@
condigurations, much like those used in the saniple parse above, :f:;:ﬁ
3.2.1. Preliminaries :f'.j:
We use here a slightly different representation for the stack scgment of a ﬁ
configuration than we did in the sample parse above. In line with our N
subroutine-call point of view on push operations. we will not keep the whole BN
stack with each configuration. Rather. each time we make a transition to ?‘_::f_
the initial state of a recognizer. we will keep a refurn pointer which indicates :"l-,_
the configuration we were in before entering that state. WS
For example. we presented above the configuration sequence for the parse E.
of cca. If we make the representational changes just described, we obtain :.'_.-'_'.j
the following. more compact representation. in which we have subscripted {j:-:j
the configurations for use in return pointers: ::-1:'
0c) [S—-4da s ' "o
[A = ¢ 1], ;expand A from item 1
:.! [A— -cA1]a =
el 1e) [A=enl)y
‘_;::‘_: [S— A-a.]s ;return toitem 1
@ [A—c-Alle
':"'J {A hd '0.6]1
e [A = <cA b)s
2 2ec) |4 -6
;;:.i [A —CcA-, l]m

[S - A’d, ]ll
[A — C'A.G]n

a Y
-

e [A — ., 12]13

¢

P .." -
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2.2 Simlating the State-hased Parser 21 i@:

[A — A 12]14 N
e A 3(cca) [§ — Aa-. ] accept

.

A S

- LrEg e e
L .
awd e

‘ : - We call the [(state), (returu pointer)] pairs used here stemns, to distingnish
, them from confignration representations that show the complcte stack.?

s

»

-
-«
Py

.
e ta

- 3.2.2. Multiple-Call Collapsing

It ia convenient to think of this method as simulating. vot one. but many

N 7 non-deterministic parsers at the same time. As these parsers run. they Y
2.,\ make different decisions at cach choice point. and the simulation keeps track :-_};:'
Qa of all the different configurations they get into. At any position in the 5

| input. the current state of any given parser is contained in some item on the f.
Rt current item list. and the contents of that parser’s stack may be computed B
';:'.: by following return pointers. from that itemn upwards. 11
(GRS

: It may happen. however. that two parsers whose stacks differ enter the j
same state at the same position in the input. For example, consider the - i
. following grammar G': o 1
:;\'.;2 <o

§— 8 73
§— 8" g

Ll
% w
20303

- 59
3

]
re

§"—~ & -
N §' = Aa s
-~ A—c i
o P
RN A—cA
I“

LS

-
@

G' dcrives the same strings as the grammar G given above. However, if G "_jf‘.
Ry derives a string via derivation tree T, then G' derives it via the following AR
\' ) "‘.

T two trees: o

Y L@4
bl N

:: 3Their relatiouship with Earley itemas is examined below. e
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The parallel structure of these trees can he seen clearly in the following
simulation of a parse of cca under G':

.l. v.“
PRI T § ORI

0(e) [S -5, ]1
{S' — -Aa,l]:
[A—-¢2;

L NODRWRERWSS  ACARANAN  ud
"
ot
W

. P PO

. . 3 PR O M &
et P T
T

- 3
% [A — -cA, 2] ol
- (S —-8" s e

(8" ~ -5',5]e 2
[§' — - A4a,8];  ;compare with item 2 5
[A = -c.7s ' <
[A—-cA, o

BT
TN

ata'imd

X,
3

1(e¢) [A = e 20

[S'— A-a,1y

[A —c- A, 2}12

[A > -e,12)5s

[A = -cA, 1254

[A =718 :compare items 15-19 with items 10- 14
[S' i A'G,ﬁ]m

(A —c AT

e W

R T Tt
P S T
A

SERAPIOE: - DURAPUASE  Ch)
M

[A —=cA- 2]y
(8" = A-a.1]n
[A = c A, 12y

g e
:': [A — <cA, 1759 ,1‘
S, .:.:.'
N 2(cc) [A—c12)2 i]
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3.2 Simulating the State-based Parser 23

[A — e, 23]34
[A — -cA. 23]as

[A = c-. 172
[A —cA-. 7]27
(8"~ A-a.0ls
[A~c-A LTz
[A ~ -c.20|30
(A — -cA.29]3

3(cca) [8' — Aa-. s
[§ =8 Jus

IISI — Aa ‘e 6]3‘
isll — sl . 5]35
[§ = 8", |ss

The possible configurations obtained upon rcading each of the input tokens
break cleanly into two groups whose state transitions are identical but whose
stack environment is different. Each group can be thought of as containing
the configurations of a different parser—one predicting the derivation that
starts § — §' and the other predicting the derivation that starte § — §" —
S'. The similarity between the two groups is a corollary of the fact that our
grammar is context-{ree. In both cases we are secing the transitions involved
in the leftmost derivation of cca from §'; thesc transitions must remain the
same regardless of the context of S’ in the derivation.

The key obscrvation herc is that., when the rccognizer for a given rule
is called. the starting posstion of that recognizer in the input completely de-
termines its behavior. A particular recognizer may be called from parsers
with a variety of stack configurations. but if all the calls occur at the same
input position. we need only simulate the state transitions made by that
recognizer once: the results can then be used in alf the parsers that made
the sirnultaneous calls. ‘

With our representation. this optimization is casily made by turning
multiple calls to the same recognizer at the same input position into a single
call with multiple returna. This leads to the following parse list for cca under
G' (cach item now contains a sct of return pointers instead of just a single
one): ’
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24 S Motivation for the Alvorithm

‘3
[S" — - Aa {1.3}y  compare with items 2 and 7 above
A= e 4l
(4 —-cA {4}jo

o) [A—e{a})
[$" = 4-a.{1.3})]s
A —c A {1)]o
[A = -c.{9%})10
(A = -cA. {9}

2(cc) A —=c.{9}h2
[4 —cA-{4}]1s
(§' = A-a.{1.3)n
(A — - A {9}
[A = -c.{1,5}]10
(4 = -cA {15}

3(cca) [§' — Aa-,{1,3}}1s
[§ — 8- 3o ireturn to item 1, accept
(8" — 8", {2} ;return to item 3, ...
[(§ = 8", {}]n i ...accept

A useful way to conceptualize the optimization performed here is to visualize
the parse trees “built”™ by the puslies and pops of the various parsers being
sitnulated. Before the optimization, the simulator built doth of the correct
derivation trees:
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After the optimization. it builds the following hybrid structure:
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The latter structure contains the samc information about the parse as the
Y : two previous trees together,
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26 3 Motivation for the Alrorithan

3.2.3. Left-recursion

An important sub-case in which mmltiple-call collapsing is applicable is that
of left-recursive gramar rules, These rules present well-known difficulties
for deterministic recnrsiveedescent parsers. because the parser can not know
how many times to invoke the recursive expansion of a noa-terminal without
looking alicad in the input. For example. consider the following graunmar:

S — Aa

A—c

A — Ac
This grammar derives cxactly the same strings as the right-recursive gram-
mar G given above. but consider the following ~parse™ of the input string
cca (we have not used multiple-call collapsing):

0) [S—-Aa |,

[A—-c. ), :expand A from item 1

[A — - Ac.1]3 Jditto

(A = -c.3, ;expand A from itemn 3 (uh oh)
[A — - Ac. 3]s

[A = -¢c,5 ;and so on

[A — - Ac,5)r

(4= -¢,7s ;and soon ...

1(c) [A = ¢+ 1]oo+1

(S = A4 |oor2 ;return to item 1

[A —-c "3]w-r3

([A— Ac,1)rors ;return to item 3

[A —c, 5]&* 5

[A— A-c.3c-8 ;return to item 5 (uh oh)
[A — ¢, 8loo+7

[A~ Ac,500s8 ;andsoon ...

2(cc) [A— Ac' loor+oo+1
[S — A-q ]oo+ao+2
IA - A‘:"3]oo+m+3
[A = At 1]ootroord
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3.2 Simulating the State-based Parser

[3-]
-3

[A = A S)a . a0 3
IA —'44'C.3]m,m-0

3(cca) (S = Aa-, |

If we perforin multiple-call collapsing. however. something very interesting
happens:

0)  [§—-Aa{}]
[A —-c.{1.3}}2 :expand itemn from items 1 and 3
(A — - A4c.{1.3}]; :note the self-recursion here
o) [A=c{13)]s |
[§ — A4-a.{}]s ;return to item 1 ...
(A = A-c,{1,3}s ;and again to item 1!
2(ce) [A =~ Ac,{1,3}]1
(§ — A-a,{}js
(A= A-c {13}

3(cca) [S — Aa-. {}10

The subtlety here involves item 3, which serves the same purpose as items 3,
5.7.9....,in the previous simulation. We arc in fact simulating an infinite
number of parsers here, one predicting each of the following parse trees:

. . " 3
1 A/ at’
/' . een . /

| |

c 2 € ¢ [ ]

.
-
L]

At any given point past the first ¢ in the input, however. they have all invoked
the same recognizer (for A — Aa) at the same point, so the simulation keeps
just onc representation for all of them.

3.2.4. Duplicate-Item Merging

Muitiplc-call collapsing optimizes the case whore different parsers invoke
the same recognizer at the same point in the input. If we consider only
unambiguous grammar, this is the only case in which recognizers invoked by

R I S

B e P A A P e N et e 0y an eaat SR Y PRSI B
it kA TP IR e S WS K < i K AR E AL w A A SN LBl SRt T 2O

PR

LU N Y

AP
) P
] e AR

Y
e bt OIS T 3 JVIRPS RN,

J

. v
i N A
t LN PR
. R N
At
o
P
- . %o )

ERr
S
o

wd }za

. ‘e
Aot o




|
Q|

< r

.‘1. ' _ . .
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- S
- different parsers are gnaranteed to perform identical actions, But comsider oY
~ the following ambiguons granunar fraguient: -
-: §—A... .'—:.'

A— BC )
B b -
C — be j':\.

C—c¢ -
; This fragment produces the following two derivations of thie string fragment .’.
> bbe: .
=

L.

% b/\L ! ; f\ B

b

&

g e
. oAt

(B = b, {1}}s
(A= B-C/{}Is xh

These derivations are recovered in the following parse: ]
= 0()  [4—-BC.{}L o
% (B = b, {1)] | =
r::'. [B — - bb, {1}]3 ~,.
a 1)

N [C — -be, {5} i
o [C — ¢, {5}]1 .
< (B —b-5,{1}]s L
b 2(85)  {C —b-c.{5}o 0,
oA B~ {1}l e
Ny [A = B-C.{}})i1 :compare with item 5 ,:..',
o [C — -be. {U1}]12 o
:_: [C = .c,{11}];s '::j:‘

! 3(bbe) [C — be-. {5}]1a : ‘9
N [A = BC-.{}}1s e
- [C = ¢ {11}]:0 =3
< i
S -
pri Qi
e =
R Sl
Lo -.:_.
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3.2 Sinmlating the State-based Parser 29

[A = BC - {}12 :compare with item 15

Note that items 15 and 17 are identical. The situation encountered here
is quite similar to that in which we invoke nmltiple-call collapsing. in that
recognizers for the =ame rle invoked sinmltancously by different parsers
have reached the sae state at the same point in the input. In this case that
state is rot the recognizers” initial state. but the same reasoning shows that
both recognizers will perform identical actions nntil their respective parsers
make differing derivation decisions. Thus. as with multiple-call collapsing.
we need only keep one itemn to represent the state of both recognizers.

3.2.5. The String Algorithm

We are now ready to state our string parsing algorithin. The algorithm
takes as input a gramnar G'and a striug a¢. and determines whether G
generates 5. The output of the algorithm is a sequence of itemn lists--one
for each symbol in a-—which represent all the configurations reachable by a
non-deterministic string parser for G operating on s. The algorithm does
not construct a parse tree for the input, but we show below how it can easily
be modified to construct all possible ones.

The algorithm operates by using a list of items I; to keep track of all
the configurations a parser might be in after reading the 1-th input symbol.
Given lists Jg, ..., I,_;. the algorithm constructs list /, by usiug three
operations:® a scanner operation, a predictor operation, and a completer
operation. We first describe the nature of these operations, and then how
the algorithm uses them to construct the lists I, [y, ..., In.

The Scanner

The scanner operation takes as input an item 1 from list J,_, and the j-th
input symbol a,. Let & he the state part of 1 and r its st of return pointers.
If s has no transition on a,. then the scanner does nothing. Otherwise, s
has a transition on a; to some state s'. and the scanner creates an item '
on list I, whose state part is s’ and whose list of return pointers is r.

We can abbreviate the scanner operation as follows: Let [A — a-tf.r]
be an item from I;_j. If ¢ is the j-th symbol of the input string. then the
scanuer adds the item (A ~ at - 8, 7] to I;.

*The names of these operations are taken from [Earley 19690].
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30 3 Mativation for the Algorithm

The Predictor

The predictor operafion takes as input an item ¢ from list 1,0 If the state
part « of 1 does not have a transition on a non-terminal node. then the
predictor operation does nothing. Otherwise. let 4 be the non-terminal on
which = has a transition. and let sp, 82, .. .. s, be thenitial states of all the
recognizers for rules which derive A. For cach s;. the predictor operation
checks to see if there is an item with state part s on list I,. If so. the
predictor adds ¢ to the return set of that item. If not. the predictor creates
an item with state part s; and return set {1} and adds it to 1.

We can abbreviate the predictor operation as follows: Let [A — a- Bry.rj;
be an item on I,. For all rules B — 3 in (5. the predictor operation searches
I, for an item of the form [B — -B.r|. If it finds one. it adds ¢ to r.
Otherwise. it adds an item [B — - 3, {i}} to 1.

The Corpleter

The completer operation takes as input an item 1 on list [,. If the state
part of 1 is not the accepting state of a recognizer for some rule of G. the
completer operation does nothing. Otherwise. let 4 be the non-terminal
derived by the accepted rule. and let 1y, .... f,, be thc members of the
return set of . Thoe state part of each #, must have a transition on A; let sy,
..., 8y be the states led to by those transitions. For cach i;. the completer
looks for an item on I; whose state part is 8; and whose return set is that
of 1,. If it finds one, it does nothing, otherwise it adds such an item to I,.

The completer opcration may be abbreviated as follows: Let (A4 — 4, ry]
be an item in I;. For each item B — a-Af,rz]; such that ¢ € ry, add
[B — aA-B,ra] to I; if it is not alrcady there.

The Algorithm

First, we coustruct I as follows:

1. Let s, .... 3m be the initial states of recognizers for the rules in G
which derive §. For cach &. add an item to Iy whose state is & and
wliose return set is empty.

2. Complete Jo by running the predictor on every item in it. If new items
arc added to it. run the predictor on them, and repeat this until no new
itemz are added.
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3.2 Simulating the State-based Parser 31

Next, we suecessively constraet fpo oo, L. Given k. ... I, . weconstret
I, as follows:

3. Run the scanucr over every item in Iy

4. Run the completer over every item in I, If this adds new items to I, run
the completer over then:. aad repeat this until no new items are added.

5. Rua the predictor over every item in ;. If this adds new items to I,. run
the predictor over theni. and repeat this until no new items are added.

A little thought will convinee the reader that this is indeed the algorithm
uscd to produce the lists shown above. A string is accepted by this algorithm
if I, contains an item whose return set is empty and whose state part is the
accepting state of a recognizer for a rule deriving S.

3.2.6. Why is this Earley’s Algorithm

The algorithm described above does not appear, prima facia. to be Earley's

algorithm. The apparent difference is due to a couple of facturs, both of
which we examine here.

Abbreviation of Return Pointers

Our algorithm uscs items of the form [A — a-3,r!. where r is a set of
return pointers. Earley's items have the form (4 — a- f,1]. where I, is the
number of input symbols read when the A recognizer was first invoked. (Of

course. at that time. the recognizer was represented by an item of the form

These represcentations ceem unrelated: however. some thought reveals
that we can cncode our representation in Earley's form. An item of the
form [A — -a.r]. when added to list . represents a call on one of A’s
recognizers at point t in the input. Thus. the callers of such an item--the
members of r--must be all the items for recognizers which expect to see an
A at point ¢ in the input. But these items are exactly all those on I; which
have an 4 to the right of their dot. Thus. if an itcm of the form (4 — - a,r]
appears on [, r must consist of exactly those items on /i that have an 4 to
the right of their dot. so we can encode r with the integer 1.
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32 3 Motivation for the Alsorithm

Handling of «-rules

Earley s algorithin handles granunars with productions of the forin 4 — ¢ R

This involves ranning the completer on Jy. and alternating the repeated
application of steps 4 and 5 (instead of applying one repeatedly and then
the other).

If these steps were added to our algorithim. and if the representation were
changed as mentioned above. our algorithmn description would agree cxactly
with the description given by Earley in [Aho azd Ullman 1972}

3.2.7. Using the Algorithm to produce Parse Trees

The algorithm we have presented here is actually an acceptor, not a parser.
That is. while its output mdicates immediately whether or not the input
string is in the language of the input grammar, it does not provide a parse
tree.

Algorithms are available from a variety of sources (e.g.. [Aho and Ull-
man 1972]) which produce a parse tree from the parse lists output by our
algorithm. In addition. consider the following definitions of the scanner and
completer operations:

The Completer

The completer operation takes as input an item : on list I;. If the state
part of 1 is not the accepting state of a recognizer for some rule of G, the
completer operation does nothing. Otherwise. let 4 be the non-terminal
derived by the accepted rule, and let 1y, ..., im be the members of the
return set of 1. The state part of each i, 1nust have a transition on A; let sy,
..., Sm be the states led to by those transitions. For cach 1;, the predictor
looks for an item on [, whose state part is s; and whose return sct is that of
t;. If it finds one, it adds to it a potuter to ¢ and a pointer to I,. otherwise
it adds such an item (including these pointers) to J;.

The Scanner

The scanner operation takes as input an item 1 from list [;_; and the j-th

‘Our algoritln: need not handle thicse productious. since we arce interested only in geaer-
alizing it to graph gramumars (in which such productions cou not occur).
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3.2 Simulating the State-based Parser 33

input symbol a;. Let 2 be the state part of ¢ and r itz sot of return pointers.

N

If & has no transition on £, then the scanner does nothing, Otherwise,
Lias a tranzition on ¢ to some state <o amd the scanner ereates an item 1 on

list J; whose state part is «. whose list of return pointers is v, and which
contaains the same completer-added pointers as 1 (if any;. oW
If the algorithin uses these definitions. each item of the form [A — a -, 7] e
in the eonstructed lists will be the root of a pointer structure giving all o
the derivationu trees for that instance of A in the mput. In particular. if a ':"
scntence is accepted by the algorithm. the items of the form [§ — a-. {}) re@r
on I, will be the roots of all the derivation trees for that sentence. .:'.:;{':
3
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el AL a

The Algorithm

U
.

Y

4
:’f In this chapter we present our flow graph parsing algorithm. The inputs to
~ the algorithm are a flow grammar and flow graph; its output is a scquence
ha ™ . . . . . * . }
" of lists similar to the itemn lists produced by Earley's algorithm.
o3 As in the last chapter, we wil] procduce the algorithm by developing a
:::4 noo-deterministic parser and then simulating its behavior deterministically.
S

Both the parser and the simulation technique generalize those we used for
strings: the resulting algorithm is a generalization in that, when it is run on
a string graph, it performs a superset of the actions performed by our string

5 B

algorithm.
i; . L3 .
< 4.1. Non-Deterministic Graph Parsers

The method we used to construct a parser for a string grammar consisted
essentially of two steps:

L - £

PR
[
S

:f: 1. Cunstruct recognizers for the right-hand sides of cach of the grammar’s
-3 productions.

2. Construct a stack-based machine out of these recognizers by replacing
thicir non-terminal recognition steps with “subroutine calls™ o other rec-
ognizers.

We will apply this samne method to flow granunars in order to construct
flow graph parsers. The nature of this construction is determined by our
generalizations of (i) the mechanism used to read the parser's input. (ii)
the recognizers used for the right-hand sides of grammar rules. and (jii) the
linkage wechanisin used to interconnect recognizers. Each of these general-
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30 4 The Algorithmn

izations preserves intnitions that arise in the string case. but phrases these
intuitions so as to wake them applicable to graphs as well as strings.

4.1.1. Reading a Flow Graph

QOur string parser constracted a parse for its input while reading it onece from
left to right. and so will our graph parser. "Once’ means that the parser will
look at cach wode in the input only one time. From left to nght” means
that the parser will consider nodes in the partial order imposed by the input
graph: that is. a node in the input will be looked at by the parser only when
it has already looked at all that node’s predecessors.

As mentioned i the last chapter, it is natural to think of our string
parser as an automaton using a read head to examine its input. This head
moves fron left to right over the input, passing the symbols read on to the
state-transition functions of the parser’s active recognizers.

Our graph parsers will examine their input graphs as if they. too, had
read heads. These heads should be thought of as “multi-track™ heads which
can be positioned over more than one node at a time. They start at the
left edge of the input, read nodes one at a time from left to right, and pass
information about these nodes on to the state transition functions of the
parset's recognizers.

For example, consider the following graph:

(©)

.

A parser reading this graph would start off with its read head positioned to
the left of the graph’s two minimal nodes. like this:
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:;-'.‘I,'.' It would then select one of the two minimal nodes to be read next - we don't .".'»:
f-f': care which. Let us say it chooses the upper one; this would leave its read :. -
2 head in the following position: o
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Here the parser must again choose which node to read: let us say it again

:-'\: chooses the upper one. "he read head would move over this node to give
X the following position:
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38 4 The Alsorithm

At this point. there is only one node  the lower one  available for reading.
Intuitively. the read head is not =just to the left™ of the graph’s maximal
node: there is still a preceding node which st be read first. Thus. the
next read hiead position is as follows:

Finally. after the last node is read. we have:

and the read head stops.

Woe have indicated the position of the read head at each stage by denoting
the unique sct of edges (possibly lcading or trailing edges) all of which follow
all the nodes already read and precede all the nodes yet to be read. We call
these edge sets head positions, and we precisely characterize the order in
which graph parsers cxamine the nodes of their inpat as follows:

1. Each parser is considered to have a read head. The initial head position
of the read head in the input consists of all the input’s leading edges.

2. The parser can examine any node all of whose incoming edges are in the
current head position. (Such a node is said to be in the right fringe of
the head position.)
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4.1 Non-Deterministic Graph Parsers 39 N

3. When a parser wiose read head is in position p examines a node n. its o

read hicad moves to anew position pf calenlated by taking p aud replacing o

n’y incowing edges by its outgoing ones. (We call pf the n-suceessor of e

p. The node i, all of whose ontgoing edges are now in p'. is said to be in @

the left fringe of p'.)

4. The parzer examines nodes one at a time until it reaches a head position
with no nodes in its right fringe. )

-—

The reader can verify that the example given above meets the ahove con- L

ditions. Some thoueht will also show that (i) a node is never read until all -

its predecessors have been read. and (ii) this method. when applied to any -

flow graph. eventually read: all the nodes in that graph. v

It is worth noting that this mcthod. while phrased so as to apply to all E‘i

flow graphs, describes exactly the motion of our sering parser’s read head

through its input “string graph.” The string case simply makes no use of
tlie non-determinism inherent in step (2).

Each time a graph parser examines a node. it passes three pieces of in-
formation to the state transition functions of its active recognizers: the type 5 ]
of the node read. its left-linkage information (a set of port-cdge pairs), and
its right-linkage information (another set). As with our read-head motion
rules, it is worth noting that this list describes in a general manner the exact -
information read by the head of a string parser. In the string case. however,
the left-linkage and right-linkage information are both trivial: it is always u’
the case that the only edge in the old head position went into the node’s
only input port, and the only cdge in the new hiead position came out of the s
node’s only output port. g

4.1.2. Flow Graph Recognizers %@

The right-hand sides of flow-grammar rules are flow graphs: thus. the recog-
nizers from which we build our parser will be low graph recognizers. These O
recognizers will receive type and linkage information about the input from -’
the parser. and compare this information with that found in their target S
graph —the right-hand side they are recognizing. Their structure and func- -
tion will be generalizations of those of their string counterparts: that is, they
will be state machines which make transitions based on the input read.
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Figure 4.1. A grammar.
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Figure 4.2. A graph generated by the grainmar of figure 4.1.

4.1.3. States

A state in a flow-graph recognizer consists of pairs matching edges in the
recognizer's target graph with edges in the parser’s current head position.
For example. consider the grammar of figure 4.1. aud the graph gencerated
by that grammnar shown in figure 4.2. At somc point in the parse of this
graph. the recognizer for the right-hand side of the A-rule might reach the
following state:
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We have indicated the parser’s head position as in the last section: the labels
on the input-graph and target-graph edges indicate the pairing which is the
state. The target-graph edge paired with a given input edge is called the ;
target smage of that ¢dge: the latter is the input frnage of the former. :ff

It iz convenient (albeit redundant) to think of a state as having two T
parts: {i) a set of edges from the target graph. and (i1} a 1-1 correspondence
between that set and some of the edges in the parser’s head position. In
this view. it becomes clearer that the states of our string recognizers had
the same composition: their edge set was the edge denoted by their Earley
dot. and their correspondence was always the trivial one sending that edge
into the single cdge in the parser’s current hicad position. The triviality of
this correspondence allowed us to ignore it and “pretend” that the states
of our string recognizers werc completely determined by their dot position.
We do not have this luxury in the graph casc: for examiple. examine the two
states shown in figure 4.3. and consider which of these states should begin
a transition sequence leading to an aceepting state.

A A a e

falalal

S

4.1.4. State Transition Functions

The state transition functions of our graph recognizers take as inputs a
recognizer state and the type and linkage information of an input node;
they produce a ncw recognizer state as output. Recognizers operate in the
expected manner: they apply their state transition functions to their current
state and the information returned by the parser’s read head. and then make
a transition to the new state returned by the transition function (if any).
The state trausition function of a graph recognizer is best thought of as an
alzorithm that procceds in two steps: it first determines whicther a transition
exists from the given state on the given input: if so. it then determines
the state that the transition leads to. In otlier words. the algorithm first
determines the acceptability of the input. and then it determines the correct
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' Figure 4.3. Two states which differ only in their correspondence part.
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- next state for its recognizer. e

Acceptability is determined by comparing the type and left-linkage in-

. .
B
»
Qe
A A

ja formation of the input node read with that of the target graph node which :,‘;";',
:-'\'.' corresponds to it. More precisely, let s be the the current state, let n be the ."",'-:_
- input node read. let L be the set of input edges of n. and let. L' be the set . T
... . \ . .

- of target imagez of L under s. If L' consists of all the input edges of some

target graph node n’, if the type of n' 1s the same as the type of n, and if
the port adjoined on n' by each edge in L' is the same as the port adjoined

[

"s . . . . . - .
- by its input image (in L). then n is said to be acceptable and n' is said to be
o its target tmage. Figure 4.4 shows examnples of acceptable input situations;

figure 4.5 shows some unacceptable ones.

o

1
»

e

Once the acceptability of an input node has been determined. the new

N state to move to is computed by matching its right-linkage information
o against that of its target image. More preciscely, let s. n, n'. L. and L'
.’A
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Figurc 4.5. Some unacceptable (state. input) pairs.
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Figure 4.6. New (statc, input) pairs computed by the state-transition algorithm
fromn the pairs of figure 4.4.

be as above. let R be the output edges of n. and let R’ be the output cdges =@
of n'. The new state &' is computed by (i) deleting from s all pairs involving L
edges in E, and (ii) adding a new pair for each edge in R. In step (ii), the '_j'.‘_':'
pair added for an edge ¢ which leaves n fromn a port p pairs it with the target o

graph edge ¢' in R' which leaves n' from p. (Since n and n' have the same
type and thus the same port sets. this operation is well-defined.) TFigure 4.6
shows the {new-state. new-input) pairs computed from the pairs of figure 4.4
by this procedure. Notice that state pairs not involving input edges to the
input node read are unaffected.

As the reader may have noticed, this procedure agrees with that used to

determine the state transition functions of our string recognizer. In fact, if
we take into account both the edge mapping implicit in our string recognizer
states, and the linkage information imiplicitly read by the string parser read
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Figure 4.7. A grammar and a state in which a sub-recognizer should be invoked.

Figure 4.8. The initiai state of the sub-recognizer invoked from the state of fig-
ure 4.7.

head, this s the proccdure used to compute the state transition functions
in our string parser.

4.1.5. Linkage Mechanism

Whenever a recognizer moves into a state whose edge set contains inputs to a
non-terminal. the parser will invoke a sub-recognizer for that non-terminal.
For example, consider the grammar and state shown in figure 4.7. Two of
the target-graph edges in the state of the S-recognizer are inputs to the
non-terminal B. so thc parser calls a recognizer for B, giving it the initial
state shown in figure 4.8,

The initial state of the B recognizer has followed by “transitivity” from
the port-correspondence information in the grammar mle for B. In general,
suppose recognizer state s contains target edges e’J—turget images of edges
e;—which are inputs to a non-terminal node n'. Tle parser deletes any edge
pairs from & which involve the c’]. chooses a production I” which derives the

o

WA

« Vv

&

Y s vy

b

E R R M
!.l‘l'-' ,..'. !'.

N P

SR
. .
LA

“on




4.1 Nou-Deterntnistic Graph Parsers 47 @

//'b ey i:::-.::

—a c~

es
Figure 4.9.  An accepting state for the recognizer invoked i fignre 4.8. This rule -'."_:::
should be reduced. R
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Figure 4.10. The result of the reduction invoked in figure 4.9.

type of n', and invokes a recognizer for the right-hand side of P. The initial
state s' of this recognizer will contain onc pair for each edge ¢! as follows:
Suppose ¢} cnters ' at port p;, and supposc port p; is mapped by P to port
p, on port n (in P's right-hand side). Then &' will pair the leading (target)
edge entering n with e, (the input image of e;). The recader is encouraged .
to verify that this procedure produces the state of figure 4.8. tes

The opecration dual to invocation of a sub-recognizer is the return of that ~,;f'
sub-recognizer. In the example given above. the state of the B-recognizer e
after the parser reads node n will be that given in figure 4.9. The edge set of
this state contains a trailing cdge. so the parser will reduce the recognized
rule and move the calling S-recognizer into the state shown in figure 4.10. In
general, whenever a state contains a target-graph trailing edge. the parser
will perform a reduction by adding edge pairs to the caller's state in a :
procedure whicli reverses that used at invacation time. e

The reader mugt by now be expecting the following claim: this linkage
mechanism is a general phrasing of the exact mechanism used by the string
parscr. It simply make explicit the mauipulations of the target-graph/inpat-
graph edge correspondence that were left imnplicit in the string case.
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4.1.6. Flow Graph Parsers

We have now introduced the three basic compouents of our parser con-
struction technigue: a mechanism for reading the input. the recognizers for
mdividnal ruies. and the linkage mechanism used to intercouneet recognizers
for different rules. Rather than state a complete construction mechanism
(a® we did in the previous chapter). we will instead consider two examples of
grammar/graph pairs and the behavior of the parser constructed for them.
These examples will expose sote details of the construction and behavior
of the resulting parsers that have not been considered thus far: in addition.
they will introduce a representation that formns the basis for that used by
our simulation algorithm.

A Simple Example

Let us start by considering the behavior of a parser constructed for the
following simiple grammar:

/A

—C — =2 — —
~ % a\B/C

—A— > —b—

when run on the following graph:
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Thix parser starts off by calling the recognizer for the right-hand side of
the mle deniving 8. The parser stack is empty. and its read head is over
the leading edge of the input. Sinee there s only one such edge, the parser
has no choice in determining the S-recognizer’'s initial state: that ix, there
is only one possible correspondence between the leading edges of the input
and those of the S-recognizer’s target graph, (We consider below how to
make this choice in general.)

Tle initial configuration of the parser is as follows:

At this point. only one node in the input is readable. As the parser’s read
head reads and maoves over it, its type and linkage information is used to
make a state transition in the S-recognizer. Of course, if the state-transition
algorithm determined the input to be unacceptable, the parser would stop
and reject the input. In this case, however, the parser moves into the fol-
lowing configuration:

This state contains target odges which are inputs to the non-terminals A
and B. The parscr thus invokes sub-recognizers for these nodes. moving
into the following configu-ation:
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The following points are worth noting:

VIR S A A A 6 A N SR P T W S A —

; e We are no longer using a simple stack to keep track of sub-recognizer calls.

{ Because nultiple calls may be made from a single state, we use a “tree-

l sheped stack™ that kecps track, for each call made, of both the calling

) state and the particular node being recognized in the caller's target graph.

1 o This belhavior appears different froni that of the string recognizer, which

! left an “Earley dot™ in frout of the node being derived. In fact, this dot

. served to identify the node being derived—a function now handled by -

: information kept on the stack--not as a state marker. -

' \'-
i . 3
-, The parser is now ready to read another node. Let us say it reads a; this

N leaves it in the following configuration:

.;,

A

bt
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The recoguizer for A Las cow moved into an accepting state, so the parser
reduces the production involved by moving into this configuration:

Note that the S-recognizer has changed state while its call to the B-recognizer
is outstanding. This could never happen in the string parscr. To emphasize
this mutability of the state information stored in a graph parser’s stack, we
think of the stored information as state objects rather than states.

Next. the b-node is read, and the B-recognizer changes state accordingly:
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b-Uer
e
—a c—
\b:)i,

The B-recognizer has now moved into an accepting state, so the parser
reduces its ru'e and moves into the following configuration:

be,
_¢< A
b~Te,

Notice that the S-recognizer state-pairs derived from the reduction proce-
dure are added to those of its prior state. This additivity, together with the
tree-shaped stack, allows multiple simultancous calls to sub-recognizers.

Finally, the parser read the m-node and moves into the following config-
uration:

The parser’s input has been completely read. and its trailing cdges are in
correspondence with all the trailing edges of the S-recognizer’s target graph.
The parser accepts.
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A Complex Example

The following example demonstrates the behiavior of a parser whose gram-
i and read-head motion combine to produce =staggered invocations and
reductions.”™ Consider the following gratumnar;

— /n/
A = AN

which derives the following 'graph:

X

’ A
\m<
~~ £~

_—

~ N

Unlike the grammar considered in the last example, the start symbol for
this grammar has two inputs, so the parser constructed from it must make
some detcrinination as to which of the input graph’s inputs correspond to
which of the start symbol’s inputs. In general, there is no way (short of
trying cach possibility) that a parser can determine which choice of corre-
spondences. if any. allows a parse. Thus. in our description of this parser
(and in our simulation algorithm), we will assume that the input itself con-
taing a specification of one such correspondence, and the constructed parser
will use that one.!

'Since the simulation algoritlun takes both grasmunar and graph as ioput. the terms for
wuch n specification are readily at hand.
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g

Let us assmne, then. that the parser for the above granunar starts in the N
following confignration on the above graph: S
e e

AN T i

—~— R

n A

e, e

The S-recoguizer’s state contains an inpat edge of the non-terminal A, so
the parser activates a recognizer for A and moves into the following config-

uration:
) ~ GX n— ,-__
S=y n/A\ N g
A N

€

The following points are worth noting:

¢ The parser has started the A-recognizer before it can dctermine an input-
' edge correspondence for all of 4's inputs. When node n; is read, and the
parser determines a correspondence for A's other input. the new input
. will be added to the recognizer's (theu-current) state. This process is
| called staggered invocation.

: ¢ Only those pairs involving input edges of A have been dcleted from §’s
: state. This “subtractivity™ is dual to the additivity of the reduction
X process.

i o Coufigurations which involve partial states. such as thiz one, will always
: result from situations in which the head image of a recognizer’s state con-
. tains some but not all of a non-terminal’s input cdges. In these situations,
the parscr will invoke a sub-recognizer for the non-terminal involved even
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if the inpnt edges corresponding to the non-terminal’s inpmts are not in-
puts to anode in the right fringe of the parser’s read head position. For
example. in this confignration:

a parscr would invoke a recognizer for B even though the node b is not
yet cligible for reading.

The parser is now ready to read a node; let us say it reads the ! node. It
would imove into the following configuration:

\X e, n/
m\
o, S~
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The other input to the previously-invoked A-recognizer has arrived. so the
parser adds it to that recognizer’s state:

\1 8, /Y\/—
m

LT Y D .

i A car-ful reader may have noticed that we have drawn a two-way arrow be-
K tween the A-recognizer and the node it was called for. This is to remind us
1 . . - . -~
B that the parser. in order to do this staggered invocation. must keep track not
B . . . S~
v only of which node a recognizer was called for, but also any recognizer that -
‘ has already been called for a given node. That is. in addition to keeping “re- e
I turn pointers™ with active recognizers. the parser must keep “call pointers™ n
with non-terminal nodes that have sub-recognizers active for them. .
h Lo
] The parser now read the m node, leading to the following configuration: o
1
.4- -
O‘I "-_
. .:;
! ’
~Q i
4 - mi -
i R e
N <
N This situation is the couverse of one encountered carlier: instead of one e
; (but not all) of the A-recognizer’s inputs having been reached, one (but not s
= all) of its outputs have. The parser performs a stagyered reduction similar ' _.
3 to the staggered invocation it performed earlier. and reaches the following
- configuration: -
| A
. >
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The parser is now ready to read cither the n- or the l-node. Let us say it
chooses n, this leads to the following configuration: ’

This configuration allows the compiction of the staggered reduction started
earlier, so the parscr terminates the A recognizer and adds to the state of

the S-recognizer:
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~ AR
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~
R ~ b S
N X \ e n .:..
m e
N A e
- 7 \J.
:‘ \"t
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. This is an accepting coufiguration. .
o o
I f .
2 4.2. The Parsing Algorithm o
:: We are now ready to present our flow graph parsing algorithm. The algo- :::jf
. rithm simulates the behavior of a non-deterministic graph parser. exploring ]
g simultancously all the parser’s reachable coufigurations. As with the string ®
algorithm of the last chapter. it will be useful to think of the algorithm as N
:: simultaneously simnulating a large number of graph parsers. each of which N
eventually makes different guesses as to the derivation tree of the input. s

7o,

4.2.1. Preliminaries ,"

-
o

N

We introduce here an item-based notation for the configurations of a graph B
parser. We will simulate a given graph parser by constructing item lists,

A -

j similar to those of the last chapter, which show the parser’s configuration ::-::
j at each step of the input.

! The basic unit of the notation is a rcpresentation of a state object called L

R a state item (or just stem). Items are composed of three parts: a state of a g
:' graph recognizer, a list of pending calls to other items, and a list of items o
:: to return to. In addition, items will sometimes be annotated as dead, and ::'_::
N they will sometimes be marked with an R-flag. (We say more about these R
q annotations below.) As before. we represent the pointers in call lists and 04
,: return sets with integers, and we subscript itemns with integers, yielding a o
> represcntation like this: s
u\ -
= g
é [(state), (call list). (return pointer))iq ;.

Using this representation. we can represent the configuration of a graph
parser by showing its read head position in the input and items for the
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state abjoets of all its recoguizers. The correspondence part of cach state
representation will be indicated by labeling the target and inpnt edges in-
volved. Tor example. in the fiest sample mu shown above, the configuration
obtained just after the invocation of the A- and B-recognizers can be given
as follows:

s=> -a.(/;>c.—— , ()8 3)), ¢]1_
(A= >b—, rit, 23]

[g-—:)ff-'b-' ’.N:L’ il’sjs

(The subscripts used here are, of course. arbitrary.)

We say that the parser’s active recognizers (or active stems) are thoze
whose states are non-empty. In the example above. only the A and B
recoguizers are active: the § recognizer is said to be suspended.

When we wish to show the entire run of a graph parser on a given input,
we can compress the space uscd by showing. after cach read operation, only
those items are active or which made a statce transition. For example, the
run of a graph parser on the grammar and input graph shown above is shown
in figure 4.11.

While this depiction of a parse run looks a lot like the parse lists of
Earley s algorithm, there are some important differences. First. not all active
items in a given list change state when the next node is read. Sccond. more
than one active item in a given list can represent recognizers invoked by a
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Figure 4.11.
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single parser. In Earley's algorithm. cach active item represented the only
recognizer currently active for at least oue parser.

4.2.2. Optimizations

Ax we did with Earley’s algorithin, we will coalesce the items representing
recognizers for the same rule which were started at the same input position
and are in the same state: one item will be used to represent the state object
of all such recognizers. In order to accomplish this. we will be using the
two optimizations—multiple-call collapsing and duplicate-item merging—
that were introduced in the last chapter.

Becanse the linkage mechanisins of graph parsers are more complex than
thoae of string parsers. we must be more careful in applying optimizations.
In particular. the presence of staggered invocations and reductions, and the
fact that calling iteins can change state while their callees are still active,
lead to cases that require a very good understanding of the intent of the
optimizations. Thus, rather than proceed directly with the statement of our
parsing algorithm, we will first consider some examples of its behavior.

4.2.3. Examples

In this section we run the parsing algorithm on five different grammér/ graph
pairs. Each sample run exposes a diffcrent facet of the algorithm’'s behavior;
between them these examples cover all the cases that the algorithm handles
specially. Having once understood all five of these examples. readers should
have little difficulty understanding the coniplete statement of the algorithm
which follows thera.

For cach example, we show all of the item lists constructed by the al-

gorithm. Each such list is followed by a some explanation of how it was
constructed.
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Example 1. AR
A\J ‘_.
o Thix exatuple considers the effects of state change in the caller while a callee e
. is still active. It introduces the e-split operation. an operation invoked at

completion time which splite a single calling item into two.

The previeus page shows a graunmar. the inpur graph derived by that

1 grammar. and the item list coustructed by the simulation before any nodes

- have been read. No non-terminals have been predicted at this peint, so only

oue item 1s necessary.
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Here is the list after reading node ay. Item 1 was acfive on the node read,
that is. its state contained inputs of that node. The node was aceeptable (as
per section 4.1.4). and the resulting transition has ied to a state containing
inputs to the non-terminals B and A. (The *[]7 symbaols around the edges ¢,
and g in item 1 indicate that these edges were present in that item’s state
inmmediately after the inpat node was scanned. but were then deleted as a
result of the sub-recognizer call mechanism.)

Only one derivation decision is possible for the A-node. but two are
possible for the B-node. Intuitively. item 1 represents the S-recognizer for
two parscrs. Bach has made a different derivation decision for B. but both
remain in the same state and were started at the same input position. Thus.
we represent both with a single itemn and use the call list for B in that item
to keep track of both outstanding calls.
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Now we read node as. Item 4 was the only one active on this node. so
it makes an appropriate transition.  Its pew state necessitates predicting
the two B-nodes by invoking appropriate snb-recognizers: this happens in a
process exactly like that seen in the last list Items 3. 6. 7. and 8 are the
result: notice that althouglh the recognizers for the upper and lower B-nodes
are beiug started on the sawne list. they are not started at the same input
position for the purposes of multiple-call collapsing.

Items 2 and 3 are on this list because. while they were not active on
the node read. they are active on a node eligible to be read. This copying-
forward of active items insures that. each time a node is read. all the items
active on that node will be present on the previous list. Thus. we never have
to search back through prior lists for active items.
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:‘\J . . ::":
_:;:,- Now the fun beging. We read node by and itenn 5 moves into an accepting ._'::
o state. We can now complete node By of item 4 by letting item 5 return, Y
ﬁ% But reeall that itemn 4 represents two recognizers: one which predicted By f}:
via item 5 and one which predicted By via item 6. If we make the state i‘;
u transition in item 4 called for by the return of item 5. we will have made a :
3:::: spurions state trausition in the recognizer which called item G. '.
1’ The solution is to c-split item 4 into item 9. This process separates into :.-:‘_:
:‘}} two items the representation of the two recognizers where were merged in __j
j itemn 4. It works by: [ R
o 1. Copying item 4 to the new itemn 9. (This gives us two items cach of which :_’::'ij
- represent both of the recognizers merged in item 4.) =
:::' 2. Removing the call to item 5 from item 9. removing the call to item 6 1
-Q' from item 4. and removing ithe return to item 4 by item 6. {This makes :

each of itemn 4 and item 9 represent only one of the two recognizers that
were merged in item 4.)

3. Geing through all the callecs of item 9 and informing thein about their
new caller. (This keeps the call list of item 9 and the return sets of its
callees consistent.)

. Going through all the callers of item 9 and informing them of their new

“
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e e N

.-'
o~
1
wa L

ey
callee. (This keeps the return set of item 9 and the call lists of its callers '.‘_-'_;
. consistent.) o
N -
‘: The effects of the c-split operation can be seen in items 1. 4.6, 7, 8, and 9 J-."_.“
- of the current list; once the c-split is complete, item 5 returns to item 4 as -
n described in section 4.1.5.

LK s

o Note that items 2 and 3. which have been brought forward to this list e
e because they are active, are unaffected by the c-split. In general, none of .:-':—1
. the ‘siblings’ of a c-split item are affected by that split; only its ‘parents’ .;-171
S (callers) and "children’ (callees) are affected. ,“
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Reading node by pmts itew 7 i an accepting state. This cosplits item 4 X
into item 10 and item 9 into item 11 for the same reasons as item § c- )
split item 4 in the last list. only this time it is the Ba node that has other Ny
derivations pending. 7Y
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2 and 3 change state, and itemn 2's return

Now we read node by, Ttems
c-splits itew Linto item 120 Ttems 409, 100 and 11 are affeeted by this split.
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T A |

.

We reid by, aia the shakeont of spurions parses hegins, Irenis 4 and (0
are active on the node read but it is not aceeptable, so their recognizers re-
jeet. We ndicate this by marking these items ax dead. astep which was not
necessary i the string case. The point here is that, althongle the recogtiz-
ers represented by these items have rejected. they may have pending ealls
to other recognizers. If these other recognizers were allowed to return to
their dead callers. these returns might cause staic transitions which lead to
spurious parses. By marking the iietns for rejecting recognizers witly dead.
we will know to suppress future returns to those items.

Reading bs also puts item 6 into an aceepting state, but its return to
items 9 and 11 does not cause them to c-split because they have no other
recognizers pending for the B) node that item G completed.

Items 1. 3. and 8 arc copied unchanuged from the previous list because
they are active. Note that item 8. although it contains item 10 in its ,otven l‘.
list. is unchanged by the fact that item 10 has died. If item 8 werc e. -« 1. o
move into an accepting state. its return to item 10 would :mply be ignored.
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We read node ¢, Ttems 8 and 11 die. Ttem 9 moves into an aceepting
state. cansing itewms L oand 12 to e-sphit mto items 13 and 1. Tlis spht
takes place even though noue of the pending calls for the A-uode completed
by itemn 9 are to live itemws: the decision whether or not to e-split s made
solely ou the basiz of number of pending calls. On the other hand. because
items 4. 10. and 11 are dead. the updating of their retury sets normally done

by the c-splits of items 1 and 12 are suppressed.
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We read node eq. Ttem 1. which is a top-ievel item, moves into an ac-

cepting state that ineludes all of jts tratling edges: the mput is accepted.
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Example 2

This example explores the interaction of nmltiple-call collapsing and stag-
gered invocation, It introduces the p-split operation. in which an item is
split into two itelns as the result of a prediction operation.

We start off with just two itemns, one for cach derivation of §.
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(v}

']
o atal

Upon reading node ayp. hoth S-recognizers make transitions into a state
containing an input of A, Since the two recognizers agree as to which inpnt
edge is input to which port of 4. nndtiple-call collapsing takes place and the
A-recognizers invaked will cacli return to borly S-recognizers.
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We read node by, aud both A-recognizers make appropriate trapsitions,

The items for the S-recognizers are active and nunchanged.
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1.2 The Parsing Algorithm 87 " @
When we read node by, the S.recognizer of itemn 1 moves jato a state o
containing the other input of 4. This recoguizer st pass this new input
down to the A-recognizers of items 3 and 4. but these items also represent
recognizers invoked by item 2, which does not want to pass down this second )

Sor
LI

input.

This situation is complementary to that in which we c-split a caller.
and the solution is also complementary: we p-split the callee. By this we
mean we split the representations of the two recognizers merged in item 3
among two items. and we do the same with itemn 4. Each of these p-splits is
accomplished similarly, for item 3 we do it by:
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1. Copying item 3 to item 5. (This gives us two items. each representing a BN
recognizer invoked by two parsers.) '

2. Removing iten: 3's return toitem 2. item 3'sreturn to item 1, and item 2's -
call of item 3. (This makes each of the items represent a recognizer
invoked by just one of the two parsers.)

In the general case. items 3 and 4 might have had outstanding calls, in
which case we would have made their callees return to both them and their .
p-splits. Ce

The result of the p-split is that we can now pass down the new input
from item 1 to items 3 and 4 without hurting the recognizers invoked by i
item 2. Thus, we are rcady to read the next node.
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